Multiplexer Based Adder for Media Signal Processing
Aamir A. Farooqui', Vojin G. Oklobdzija'? , Farzad Chechrazi'

'LSI Systems Laboratory,
SONY US Research Laboratories,
San Jose, CA 95134,
e-mail: aamirf@lsi.sel.sony.com.

Abstract

This paper presents the design of a highly re-configurable
adder, which has been optimized for speed and area. Since
pass transistor based multiplexer is the fastest element in
standard CMOS logic, we designed the adder using only
multiplexers and 2-input inverted logic gates. This adder is the
hybrid of binary carry lookahead adder of Brent, and carry
select adder. By using the hybrid approach, the area and
wiring of the adder is reduced by 1/2, keeping the adder delay
proportional to O (log n). The critical path of the 64-bit
partitioned adder consists of 7 two-to-one multiplexers and 1
XOR gate. The adder can be partitioned to support a variety of
data formats, it can add two 64-bit operands, four 32-bit
operands, eight 16-bit operands, or sixteen 8-bit operands. The
adder can be used for multi-media applications, and is well
suited for VLIW processors. The adder is described in Verilog,
and synthesized using Synopsys tool. The critical path delay of
the 64-bit adder is 0.9 ns at typical conditions in standard cell
0.25 um technology. '

Imtroduction

Addition is an important operation affecting the speed and
total performance of digital signal processors. High-speed
adders can be realized using most widely used carry look-
ahead (CLA) [1], carry select [2], or binary carry look-ahead
[3,4] techniques. CLA adders can be realized in two gate
levels provided there is no limit on fan in/ont. With the
shrinking VLSI dimensions and low voltage operation, it is
not cost effective to have more than few transistors in series,
which limits the efficiency of CLA adders. The carry select
adders reduces the computation time by pre-computing the
sum for all possible carry bit values (i.e., ‘0’ and ‘1°). After
the carry becomes available the correct sum is selected using
a multiplexer. Carry select adders (CSA) are in the class of
fast adders, but they suffer from fan-out limitation since the
number of multiplexers that need to be driven by the carry
signal increases exponentially. In the worst case, a camry
signal is used to select n/2 multiplexers in ah n-bit adder. The
binary carry lookahead adder is a variant of CLA. It computes
the carry in a binary tree fashion (using an associative
operator), and the sum is generated using the intermediate
carries. The Brent’s binary carry lookahead adder produces a
highly regular structure with high speed (proportional to
O(log n)), at the expense of increased wiring and area. The
Brent adder has not been in widespread use because of the
additional delay introduced by the expomentially growing
interconnection complexity.

In this paper we have presented the design of a fast 64-bit
adder using multiplexers. This approach is the hybrid of
Brent [3] and carry select {2] method. The adder has been

* Integration Corp.,
Berkeley, CA 94708.
email: vojin@nuc.berkeley.edu.
http://www.integr.com.

implemented, using the ‘o’ operator as described by [3,4]
using four-bit groups, instead of binary. By using four-bit
groups, the number of wires and hardware has been reduced
by 1/2, keeping the adder delay proportional to O(log n). The
carry select method [2] works in parallel with the carry
generation, and calculates the two sums based on Cy, = 0, and
Cy = 1 for a group. When the actual carry for a group
becomes available via fast carry generation, the correct sum is
selected using a multiplexer. Pass-transistor multiplexers,
have been used in the carry and sum generation as in [6]. The
critical path of the 64-bit partitioned adder is equivalent to 7
two-to-one multiplexers and 1 XOR gate.

Multi-media processors with the wider and varying word
lengths, require highly re-configurable adders, which can be
reconfigured for variety of data formats, The proposed adder
has been designed for multi-media applications. It can add
two double word, four word, eight half-word, or sixteen byte
operands, along with the generation of carry out and
Overflow (OV) for saturation arithmetic. Due to its highly
structured design, and generation of carries in groups of four,
the adder fits well for multi-media applications as a
partitioned adder.

The paper is organized as follows. Section 1 provides the
mathematical analysis based on Brent’s ‘o’ operator for the
four bit carry. A simple solution for partitioning an n-bit
adder into n/w (w = word length of the data type) blocks is
provided in Section 2. The VLSI implementation, and
simulation results are presented in Section 3 and 4
respectively.

1. Mathematical Analysis:

Tet, A= Ay-1» A2 weeee aj, g, and B= bn-l; bn-2’ bl, bg be the
two input operands, with a, and b, be the most significant
bits. The generate and propagate signal at bit position “i” are
given by; g, = a; * b, and p; = 3; ® b,(where: « = AND
operation and ® = XOR operation). The Carry out from bit
position “i” is given by; C; = g + g.op; (where + = OR
operation) provided Cp = 0. The “¢” operator as defined by [3]
is given as follows:

(gpo.p)=@g+psg)pep) 1)
The group Generate (G) and Propagate (P) are given by:
(Gi, Py = (g0, po} if i =0 & (gipi) 0 (81, Pi) if O<i<n (2)

In [3,4,5], using (1), the generate and propagate signals for
each level (k) of the adder are generated using the following
combination:

(Giyak, Piyok) = (giok, puak) 0 (g p;) for0O<k <logn (3)

100

In the proposed implementation for ‘n’ bits, at k = O (first
level) n/2 generate and propagate signals are produced using
the following combination:

(Gaists Painr) = (€101, Paier) © (821, P2j) for 0 <i < n/2 4)

At the second level n/4 signals are produced (by grouping the
signals generated at the first level) using (4) but limiting i to
n/4, These signals are the four-bit group generate and
propagate signals, their value for 4-bit case is given below,
and their grouping is shown in Fig. 1.

(10, P10) = (1. P1) 0 (20, Po) and
(€32, P32) = (g3, P3) 0 (g2, P2) at k =0 (at first level) (5)

(Gip, Pag) = (232, p2) 0 (Z10- Prio) (at second level) (6)

In this realisation no (g, p2) or intermediate even carry is
generated, because these are generated within the conditional
sum adders. Once we have the 4-bit group carries, the carries
in multiplies of 4 are generated using (2). Fig. 1 shows the
generation of carries for a 16-bit adder. This technique results
in minimum wiring and area, for n bits, approximately 2n/2*
signals are generated at each level of the adder in contrast to
[3, 5] which requires 2(n-2¥) signals. A comparison of [5], and
the proposed adder implementation using 0.25 um standard
cell library is given in Table-1. It is clear from Table-1 that the
wiring and area of Brent’s adder [3,5] increases exponentially
with the increase in the number of bits. In contrast the
proposed adder offers linear increase in wiring and area,
keeping the delay equivalent to Brent’s adder.

COAQQOCOCOQOC

O
8

-
W 0™ OV UM oY W7 WPt W® O® T 0™ uT o

Fig. 1. Carry generation scheme for the proposed 16-bit adder. -

Adder Proposed Brent and Kung [5]
Delay | Area | #of [Delay | Area | #of
(ps) Nets (ps) Nets

8-Bit | 625 194 | 181 560 190 | 174

16-Bit | 665 | 460 | 428 670 458 | 421
32-Bit | 710 | 850 | 764 767 1155 | 1136
64-Bit | 903 | 1517 | 1316 869 | 2646 | 2554

Table 1. Comparison of delay, cell area, and # of wires in
Brent & Kung[5] and the Proposed adder in 0.25um standard
cell library at 2.5V and 250C.,

101

2. Partitioning: '

The main motivation behind the design of this adder is to
calculate multiple independent additions and their associated
flags/conditions (OV, C,,,) with different word-lengths using
only one adder. This is the key requirement for Media
processors. It seems simple to control the partition of an
adder, by controlling the carry signal of each partitioned
adder. In reality, this is not feasible because the carry chain is
on the critical path of the adder and if we insert the control
gate on the carry chain then the delay of the largest word size
increases in proportion to the number of partitions. The other
problem is that, in an adder we need a block carry (carry out)
signal at three places:

1. Generation of Sum

2. Calculation of rest of the carries (in case of CLA of other
fast adders), and

3. Ceneration of C,,, OV conditions.

One solution to this problem (as used in Motorola's "AltiVec"
(81) is to insert one extra bit for each partition, by forcing this
bit to 0" (‘1) partition (no partition) of the adder is achieved.
However, this is not a good solution because it not only
increases the adder size, but also results in higher delay. In
this paper we provide a simple solution for partitioning the
adder without producing any delay in the critical path and
producing all the three carries mentioned above. In the
following, we will show the partition of a 16-bit adder into
four 4-bit adders, but it can be extended to any partition in
multiples of 4. Consider a 16 - bit adder (Fig. 2) formed using
the 4-bit groups. The group generate and propagate signals
are Gy, Py, for the first group, Gyy, Py for the second
group and so on.

Now if we want to divide this adder into 4 adders of 4-bit
each, then we need to make C; equal zero for the block
generating Sum,.;, C; equal zero for the block generating
Sumg.y;, and Cy; equal zero for the block generating Sumyz.ys.
At the same time we need these carries for the generation of
C,u and OV conditions. If we just make C; = 0 then, we get
wrong Cy, Cy), Cys due to their dependency on Cy.q and Py,
and the same applies for the other carries. The only way to
solve this problem is to make Py7 = 0 (Pg.y1, Ppas for the
other partitions). By making this propagate signal zero, all the
carties dependent on this propagate signal will become ‘0’
and at the same time the C,, generated by a block remains
valid for the calculation of OV condition. Since propagate
signal is not on the critical path (less loading then generate
and carry signals), its control is easy and does not require any
significant delay. The only problem is the correct selection of
the sum due to carry in of ‘0’ since the OV condition requires
a delay of an XOR gate after the generation of the carry
signal. Therefore, making the carry in = 0 for sum selection
does not cost any further delay, and at the same time reduces
the load on carry signal.

3. Implementation:
Based on the analysis presented in Sections 1 and 2, we have

“ designed a 64-bit partitioned adder. Fig. 2 shows the 16-bit

block of this adder. The partition of the adder is performed

B1215A1215 B&811 A811 B47 Ad7 B03 A03
Part_
Cont
4-bit MUX ~ 4-bit MUX L
based group based group based group based gioup
carry gen. carry gen. carry gen. | _—‘P carry‘g‘:gen.
P = 3]
1213 G12 15 Gy Gos
v
UX and NCR
P G
8-15 8.15
TS V? Gy
ﬁ N r v
%d NAND MUX and NAND
P GO Is PO-ll Go_“)
B1215 A1218 B1215 Ai1215 BB11 AB{1 CimBBHAsn _BAT A47 Cin1B47 A47 B03 AD3 CinO
ciny | J Cinod l Cino | l , cing | ,
4-bit J 4-bit J 4-bit J 4-bit J 4-bit <J 4-bit 4-bit J
4 Sum Sum Sum Sum Sum Sum Sum
é‘
C Gy c, Part_ c,
Sum12-156 Sum8-11 Cont Sum4-7 Sumo-3

Fig. 2. 16-Bit block of the proposed adder.

according to Table-2. In order to get the highest speed using
static CMOS standard cells, we restrict our design to 2-input
NAND, NOR, XNOR and two-to-one multiplexers. The
reason for using these gates is that, the delay of NAND, NOR
gates in static CMOS is less than that of the non-inverting
gates (AND, OR etc.), and in current technology multiplexers
are realised using transmission gates, and inverters which offer
the delay comparable to a single gate [6, 7].

Partl | Part0 | Adder Operation

0 0 Byte

0 1 Half-word (16-bit)

1 0 Word (32-bit)

1 1 Double word (64-bit)

Table 2. Adder operation controlled by Part0 and Partl
controls.

The four bit generate and propagate logic is shown in Fig. 3.
The circuit operation is simple, go; = a,oby, if ,® b, = 0; and
o1 = 2yoby if ay ®by = 1, taking advantage of the property that
£:=1 and p;=1 can never occur. Once we have the two bit
generate and propagate signals the 4-bit (and higher) group
generate and propagate signals are calculated using one level
of a two-one multiplexer and NAND/NOR gate respectively.
Although we could have used the And-Or-Invert (AOI) cells
instead of the two-one multiplexer, we have found that the
delay of the AOI cells in our library is higher than the delay
of the multiplexer, in addition it requires a buffer to drive
more than two gates.

The final sum is calculated based on the carry signal. Since,
the four bit carry select adders are not on the critical path,
they could be designed using two sets of four bit ripple carry
adders, with C;, = 0 for one set , and Cy, =1 for the other set.
However, we have found that,it is possible to reduce the
hardware by merging the two adders together. Fig. 4 shows
the schematic diagram of the 4-bit merged carry select adder

(CSA). The hardware of this merged CSA is approximately
40% smaller then the hardware required by two separate four
bit ripple carry adders. In VLSI implementation, the 4-bit
CSA is combined with the 4-bit carry generate circuit, Once
this block is ready, the final goal in the realisation of high
order adder is the cascading of all carry-sum blocks together
using only multiplexers and NAND/NOR gates (Fig. 2 circled
block) according to Equation (1).

Bos Po

Fig. 3. Four bit carry and propagate generate circuit, using
multiplexers.

4. Critical Path:

As one can see from Fig. 3, the four bit group carry
(propagate) signal is generated in 1-XOR and 2-multiplexer
(NOR) delays. After the first two levels, one multiplexer
delay is required at each level of the adder. The critical path
of adder is very predictable, starting from ag,bp and going
onto Cy 3s..... Coe3. The number of gates in this path are
equivalent to 6 muitiplexers (log 64) and 1-XOR gate. The
correct sum is produced in 7-multiplexer delays including the
delay of the CSA multiplexer.

102

b2 a2 b1 af b0 a0
» Uw Ug v
0 " < S
L7
p3 p2 — pt
Y p 90
g1 PO
0 1 0 1 \0 1 T 1 Cln
Sum3 Sum2 Sumi Sum0

Fig. 4. Schematic diagram of the 4-bit fused carry select adder.

5. Simulation Results:

The partitioned adder has been implemented in Verilog,
(using Cadence schematic capture tool) and synthesised in
0.25um standard cell library. Due to its medular nature,
designing a high order adder using the blocks mentioned
above is simple. We have synthesised adders of 8-bit, 16-bit,
32-bit and 64-bit separately. During these syntheses, a
maximum fan-out of 4 has been used. The critical path delay
for all of these adders at 2.5V and 25°C, using typical
conditions of 0.25 um standard cell library are shown in
Table-1. This table shows the critical path delay of 903 ps for
a 64-bit partitioned adder, with minimum area and wiring.

Conclusion:

In this paper, the design and implementation of a fast 64-bit
partitioned adder in standard CMOS has been presented. This
adder has been design for Multi-media applications, but can
also be used in general purpose, VLIW processors without .
performance degradation. The proposed adder can add two
64-bit operands, four 32-operands, eight 16-operands, or
sixteen 8-bit operands, along with the generation of C,,, and
OV conditions for all the cases. The adder has been
implemented in Verilog, and synthesised in Synopsys using
standard cell library. The critical path delay of the 64-bit
adder as reported by Synopsys is 0.9 ns at typical conditions
in 0.25 um technology. Further speed improvement can be
achieved by using full custom design techniques.

Acknowledgments:

The authors are grateful to B. Nikolic for his assistance, and,
SONY US Research Laboratories., for supporting this
research.

References:

1. Weinberger and J. L. Smith, “A logic for high speed
addition”, National Bureau of Standards Circular 591, pp.
3-12, 1958.

2. Kai Hwang, "Computer Arithmetic: Principles
Architecture and Design”, John Wiley and Sons, 1979.

3. Brent R, "On the addition of binary numbers", IEEE
Trans, Computers, C-19, 758 (1970).

4. Brent, RP,; Kung, HT., “A regular layout for parallel
adders”, IEEE Transactions on Computers, vol.C-31,
(no.3), March 1982. p.260-4.

5. Dozza, D.; Gaddoni, M.; Baccarani, G. “A 3.5 ns, 64 bit,
carry-lookahead adder”, 1996 IEEE International
Symposium on Circuits and Systems. Circuits and
Systems, p.297-300 vol.2.

6. Oklobdzija, V.G., "Simple and efficient CMOS circuit
for fast VLSI adder realisation". 1988 IEEE International
Symposium on Circuits and Systems, p.235-8 vol.1. 3
vol. 2915 pp. 22.

7. Quach, N.T.; Flynn, M.J., “High-speed addition in
CMOS" IEEE Trans. Computers, vol.41l, Dec. 1992
p.1612-15. ‘

8. Martin S. Schmookler, et, al., "A Low Power , High
Speed Implementation of a PowerPC Microprocessor
Vector Extension”, to be presented at 14" Symposium on
Computer arithmetic; 1999.

103

